Majorization Bounds for Ritz Values of Hermitian Matrices∗

نویسنده

  • CHRISTOPHER C. PAIGE
چکیده

Given an approximate invariant subspace we discuss the effectiveness of majorization bounds for assessing the accuracy of the resulting Rayleigh-Ritz approximations to eigenvalues of Hermitian matrices. We derive a slightly stronger result than previously for the approximation of k extreme eigenvalues, and examine some advantages of these majorization bounds compared with classical bounds. From our results we conclude that the majorization approach appears to be advantageous, and that there is probably much more work to be carried out in this direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Transactions on Numerical Analysis

Given an approximate invariant subspace we discuss the effectiveness of majorization bounds for assessing the accuracy of the resulting Rayleigh-Ritz approximations to eigenvalues of Hermitian matrices. We derive a slightly stronger result than previously for the approximation of k extreme eigenvalues, and examine some advantages of these majorization bounds compared with classical bounds. From...

متن کامل

Rayleigh-Ritz Majorization Error Bounds with Applications to FEM

The Rayleigh-Ritz (RR) method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in t...

متن کامل

Rayleigh-ritz Majorization Error Bounds with Applications to Fem and Subspace Iterations

The Rayleigh-Ritz method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in the Ri...

متن کامل

Majorization : Angles , Ritz Values

Many inequality relations between real vector quantities can be succinctly expressed as “weak (sub)majorization” relations using the symbol ≺w. We explain these ideas and apply them in several areas: angles between subspaces, Ritz values, and graph Laplacian spectra, which we show are all surprisingly related. Let Θ(X ,Y) be the vector of principal angles in nondecreasing order between subspace...

متن کامل

Ritz Value Localization for Non-Hermitian Matrices

Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008